Handling adversarial concept drift in streaming data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handling adversarial concept drift in streaming data

Classifiers operating in a dynamic, real world environment, are vulnerable to adversarial activity, which causes the data distribution to change over time. These changes are traditionally referred to as concept drift, and several approaches have been developed in literature to deal with the problem of drift handling and detection. However, most concept drift handling techniques, approach it as ...

متن کامل

Handling Gradual Concept Drift in Stream Data

Data streams are sequence of data examples that continuously arrive at time-varying and possibly unbound streams. These data streams are potentially huge in size and thus it is impossible to process many data mining techniques (e.g., sensor readings, call records, web page visits). Tachiniques for classification fail to successfully process data streams because of two factors: their overwhelmin...

متن کامل

Handling Sudden Concept Drift in Enron Messages Data Stream

Detecting changes of concept definitions in data streams and adapting classifiers to them is studied in this paper. Many previous research assume that examples in a data stream are always labeled. As it may be difficult to satisfy in practice, we introduce an approach that detects a concept drift in unlabeled data and retrain a classifier using a limited number of labeled examples. The usefulne...

متن کامل

MOA Concept Drift Active Learning Strategies for Streaming Data

We present a framework for active learning on evolving data streams, as an extension to the MOA system. In learning to classify streaming data, obtaining the true labels may require major effort and may incur excessive cost. Active learning focuses on learning an accurate model with as few labels as possible. Streaming data poses additional challenges for active learning, since the data distrib...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems with Applications

سال: 2018

ISSN: 0957-4174

DOI: 10.1016/j.eswa.2017.12.022